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Abstract

 

Results of a geometrically nonlinear finite element
parametric study to determine curvature correction factors
or “bulging factors” that account for increased stresses due
to curvature for longitudinal cracks in unstiffened pressur-
ized cylindrical shells are presented.   Geometric parame-
ters varied in the study include the shell radius, the shell
wall thickness, and the crack length.  The major results are
presented in graphs of the bulging factor as a function of
the applied load and as a function of  geometric parameters
that include the shell radius, the shell thickness and the
crack length.  The computed bulging factors are compared
with solutions based on linear shallow shell theory, and
with semi-empirical solutions that approximately account
for the nonlinear deformation in the vicinity of the crack.
The effect of biaxial loads on the computed bulging factors
is also discussed. 

 

Intr oduction

 

Transport fuselage shell structures are designed to
support combinations of internal pressure and mechanical
loads which can cause the structure to have a geometrically
nonlinear response.  These fuselage shells are required to
have adequate structural integrity so that they do not fail if
cracks develop at some time during the service life of the
airplane.  The structural response of a transport fuselage
shell structure with a crack is influenced by the local stress
and displacement gradients near the crack and by the inter-
nal load distribution in the shell.  Local fuselage out-of-
plane skin displacements near a crack that are induced by
internal pressure loads can be large compared to the skin
thickness, and these displacements can couple with the in-
ternal stress resultants in the shell to amplify the magni-
tudes of the local stresses and displacements near the
crack.  In addition, the stiffness and internal load distribu-
tions in a shell with a crack will change as the crack length
increases.  This nonlinear response must be understood
and accurately predicted in order to determine accurately
the structural integrity and residual strength of a fuselage
structure with damage. 

Current residual strength analyses and damage tol-
erant design practice rely primarily on geometrically lin-
ear analyses and fracture analyses based on linear elastic
fracture mechanics.  Linear elastic fracture mechanics
suggests that the strength of the stress singularity at the
crack tip, or the crack-tip stress intensity factor, is an in-
dicator of the likelihood of fracture.  The conventional
engineering approach used in current design practice is
to predict the crack-tip stress intensity factors for a crack
in a fuselage shell by applying a so-called “bulging fac-
tor,” in combination with additional design factors that
account for stiffening elements, to the stress intensity
factor for a flat sheet subjected to similar loading condi-
tions.  The bulging factor accounts for the effects of cur-
vature in the shell and amplifies the flat-sheet stress
intensity factor to account for the larger crack opening
and greater crack-tip stress intensity that occur in a shell.
The increases in crack opening and crack-tip stress inten-
sity are caused by the out-of-plane displacements in the
neighborhood of the crack.   

Both analytical
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  and empirical formulas
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 for
the bulging factor have been developed.   The analytical
formulas are based on linear thin shell equations, and are,
in general, valid only for small values of the shell curva-
ture parameter , where, for an isotropic shell,  is de-
fined as:

(1)

and:

In the present paper,  is held constant and  is taken
to be the geometric parameter:

(2)

For a longitudinal crack in a shell subjected to in-
ternal pressure loads, the analytical bulging factors tend
to overestimate the physical bulging effect, unless the
cracks are very short.  The error introduced by the linear-
ization of the shell equations has been explained by Riks,
et al.,
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that develop along the crack edges as the crack bulges.
These tensile stresses increase the resistance to addition-
al crack bulging and crack opening.  This nonlinear cou-
pling between the bulging deformations and the
membrane tensile stresses is not predicted by a linear
analysis.  More recently, some empirical formulas for de-
termining bulging factors which attempt to account for
the nonlinear character of the bulging response have
been developed.   These empirical formulas were devel-
oped for specific materials, geometries and loading con-
ditions, and thus, the validity of the formulas is limited to
certain applications.   These formulas may lead to unsafe
designs if their predictions are non-conservative, or con-
versely, to excessive structural weight if they are overly
conservative.

The present paper has two objectives.  The first ob-
jective is to present the results of a comprehensive geo-
metrically nonlinear numerical parametric study of the
response of aluminum shells with centrally located lon-
gitudinal cracks subjected to combined internal pressure
and mechanical loads.  The numerical analysis is con-
ducted using the STAGS
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 (STructural Analysis of Gen-
eral Shells) nonlinear finite element code.  Geometric
parameters varied in the parametric study include the
shell radius, the shell wall thickness, and the crack
length.  The second objective is to summarize and assess
some of the approximate analytical and empirical ex-
pressions that have been developed for predicting bulg-
ing factors for use in crack growth and residual strength
analyses of fuselage shells.  The accuracy and range of
applicability of the approximate expressions are assessed
through comparisons with the present geometrically
nonlinear analysis results.  The major results are present-
ed in graphs that show the bulging factor as a function of
applied load and as a function of the shell radius, the
shell thickness, and crack-length parameters.  Also in-
cluded are descriptions of the overall shell response and
the local crack deformations. 

 

Strain-Energy Release Rate and Bulging Factor

 

A principal interest of a designer is a method for
predicting when a crack in a structure will grow, and for
predicting the residual strength remaining in a structure
with a crack over a portion of its length.  Linear elasticity
predicts a stress singularity at the tips of cracks, and in
the case of a flat plate, the stress singularity has the char-
acter of the inverse square root of the distance from the
crack tip.  The strength of the crack-tip stress field singu-
larity is represented by the stress intensity factor, ,
which has been suggested as being significant in deter-
mining the likelihood of crack extension. 

 

  

 

For a flat
plate, or in cases when the linear shell equations apply,
the crack-tip stress field and the stress intensity factor are
proportional to the loads, and the stress intensity factors

can be related to the strain-energy release rate.
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For a
flat plate with a central crack subjected to uniaxial ten-
sion perpendicular to the crack direction, the stress inten-
sity factor, , is defined as:

(3)

where  is the in-plane remote stress acting perpendic-
ular to the crack line, and  is a function to account
for finite width effects.  For the traditional Mode I type
loading condition, where the applied tensile load is per-
pendicular to the crack line,  the relationship between
the stress intensity factor and the strain-energy release
rate has the form:

(4)

where  is Young’s modulus, and  is the plate thick-
ness.  When geometrically nonlinear effects are present,
the stress field, and hence the stress intensity factor, are
not linear functions of the applied load, and the stress
intensity factor cannot be defined as in Eq. (3).  To
address this problem, an engineering approach is
employed and the nonlinear stress intensity factor for
the shell, , is defined on the basis of Eq. (4).
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  For
the present study, the stress intensity factor  is calcu-
lated from:

(5)

For the symmetric loading conditions considered in the
present paper,  defined by Eq. (5) is the total stress
intensity factor, and is a combination of the symmetric
membrane and bending stress intensity factors,  and

, respectively.
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  In the present paper, only the total
stress intensity factor  is considered.  The stress inten-
sity factor  is related through a bulging factor to the
stress intensity factor for the reference problem of a flat
plate with a central crack subjected to uniaxial tension
perpendicular to the crack direction.  The bulging factor,

, is defined as the ratio of the stress intensity factor 
in a shell with a crack, to the stress intensity factor 
in a flat plate of the same material, thickness, crack
length, and in-plane remote stress, , acting perpendic-
ular to the crack line:

(6)

Many studies have been conducted to characterize bulg-
ing cracks, and both analytical and empirical formulas
for the bulging factor have been developed.  Folias
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 pro-
vided the first analytical expressions for the stress inten-
sity factors in shells, using a formulation based on
shallow shell theory.  These expressions are valid for
small values of the shell parameter .  Erdogan and
Kibler
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 extended the range of application of these
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expressions to larger values of by solving numerically
the integral equations associated with the problem.  In
more recent work, semi-empirical approaches have been
employed to develop expressions for the bulging factor.
In the subsequent results section of the present paper,
bulging factor results from the geometrically nonlinear
finite element analyses are compared with Erdogan and
Kibler’s results and to semi-empirical relations devel-
oped by Chen,
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 Jeong and Tong,

 

8

 

 and Bakuckas et al.
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The semi-empirical relations were derived using a strain
energy approach combined with dimensional analysis.
The resulting relations for the bulging factor contain
empirical constants that were determined from experi-
mental data,

 

7,8

 

 or from a geometrically nonlinear finite
element parametric study.
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 The resulting relations
developed by Chen,

 

7

 

 Jeong and Tong

 

8

 

 and Bakuckas et
al.,

 

10

 

 are provided in Eqs. (7), (8), and (9), respectively.   

(7)

where  , and  is the internal pressure.  The
remote axial stress is  and the remote hoop stress is

.  

(8)

(9)

The empirical constants in Chen’s expression, Eq. (7),
were determined from fatigue crack growth tests of
pressurized curved panels, with maximum remote hoop
stress levels equal to 8.5 and 13.5 ksi.  Tests were con-
ducted for both uniaxial and biaxial loading conditions.
In the tests, the biaxial load ratio  was equal
to zero for the uniaxial loading condition and equal to
0.24 for the biaxial loading condition.  Chen tested
seven shells, with geometries with

 and .  The empirical
constant in Jeong and Tong’s relation, Eq. (8), was
determined from residual strength tests of curved panels
with a radius in. and with ratios of 
between 0.06 and 0.10.  Hoop stress levels were
between approximately 5.0 and 12.5 ksi.  The empirical
constant in Eq. (9) was determined from a geometrically
nonlinear finite element parametric study.  The values of

 ranged from 0.017 to 0.18, and the remote hoop
stress level ranged from 5.0 to 20.0 ksi.   

 

Shell Geometry and Analysis Procedure

 

Shell Model

The geometry of a typical shell analyzed in the
present study is defined in Fig. 1.  The shell shown in Fig.
1 is a segment of an infinitely long cylindrical shell, with

an infinite number of equal length longitudinal cracks
evenly distributed along the length of the cylinder to
maintain the symmetry of the models.  The shell is made
of 2024-T3 aluminum alloy and has a radius, , an axial
length, , a circumferential length, , a wall thick-
ness, , and a crack length, .  The crack is centrally
located and is oriented longitudinally (parallel to the x-
axis).  The Young’s modulus, 

 

E

 

, for the aluminum alloy
is equal to 10.35 msi and Poisson’s ratio is equal to 0.3.
The values of shell radius, half-crack length, and wall
thickness that were included in the present study are:

 in., 10 in., 20 in., 40 in., 80 in., 120 in., 240 in.;
in., 0.50 in., 1.0 in., 2.0 in., 4.0 in., 8.0 in., and

16.0 in.; and in., 0.04 in., 0.06 in., and 0.10 in.,
which resulted in a variation of the shell curvature pa-
rameter

 

 

 

of

 

 

 

.  Only combinations with
 were considered.  The loading condition for

the shell consists of an applied internal pressure, 

 

p

 

,
which generates a hoop stress reaction, , and an axial
stress, , which is the sum of the stress from a bulkhead
pressure load, , and an applied mechanical load,

.  Three biaxial load ratios are considered:
,  and .

Typical finite element models used to simulate the
response of the cracked shells are shown in Fig. 2, for
shells with two different crack lengths.  Quarter symme-
try was assumed, so only the shaded portion of the shell
segment shown in Fig. 1 was modeled.    Models are
shown for two crack lengths to indicate the meshing pro-
cedure employed for the wide range of parameters con-
sidered.  The model dimensions in the  and 
directions, and the element dimensions were scaled by
the crack length.  This approach was used to reduce the
effort required to model shells with different crack
lengths, while maintaining reasonable consistency in the
solution resolution in going from a mesh for a short crack
to a mesh for a long crack.  The dimensions of the models
in the  and  directions were set equal to .  These
dimensions were chosen to reduce finite width and finite
length effects to an acceptable level; that is, changing the
edge conditions resulted in less than a 2% change in the
computed stress intensity factor.

The shells were modeled using STAGS standard
410 quadrilateral shell elements and 510 and 710 mesh-
transition elements, where needed.  The elements are flat
facet type elements and are based on Kirchoff-Love shell
theory and the nonlinear Lagrangian strain tensor.
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Each of the shell element nodes has six degrees of free-
dom, including three translational degrees of freedom,

 

 u

 

,

 

v

 

, and 

 

w

 

, and three rotational degrees of freedom, 
and about the axes

 

 x

 

, 

 

y

 

, and 

 

z, 

 

respectively (see
Fig. 1).  Symmetry boundary conditions were prescribed
on the left and bottom edges of the model.  Periodic
boundary conditions were prescribed to approximate the
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physical boundary conditions on the top and right edges
of the model.  The right edge of the model was also con-
strained to remain cylindrical throughout the loading
process.   Specifically, on the top edge of the model, the
circumferential degree of freedom, , and the rotational
degrees of freedom,  and  were set equal to zero;
and on the right edge of the model, the axial and radial
degrees of freedom,  and  respectively, were con-
strained to be uniform, and the rotational degrees of free-
dom,  and  were set equal to zero.  A symmetric
crack with only one side of the crack modeled was de-
fined along the bottom edge of the model.  The crack has
a half crack length equal to  and starts in the lower left
corner of the model and extends to the right.  A fine mesh
was required to represent the stress and deformation gra-
dients near the crack tip.  To eliminate the dependence of
the results on mesh resolution, several analyses were
conducted, with increasing mesh refinement in the crack-
tip region, until further refinement produced less than
1% change in the total stress intensity factor, .  The
analyses converged using elements near the crack tip
with edge lengths equal to .  Predictions of the flat-
plate stress intensity factor using the converged mesh
were within 1% of the predictions obtained using Eq. (2),
with Irwin’s finite width adjustment.13  The loading on
the shell consisted of two parts.  Internal pressure was
simulated by applying a uniform lateral pressure to the
shell wall and an axial tensile force to the right edge of
the shell, with multi-point constraints to
enforce a uniform edge displacement.  The load cases

 and , were simulated by applying an
additional axial force to the right edge of the model while
retaining the multi-point constraints to enforce the uni-
form edge displacement.

Nonlinear Analysis Procedure

The shell responses were predicted numerically us-
ing the STAGS (STructural Analysis of General Shells)
nonlinear shell analysis code.12  STAGS is a finite ele-
ment code for general-purpose analysis of shells of arbi-
trary shape and complexity.  STAGS analysis
capabilities include stress, stability, vibration and tran-
sient response analyses, with both material and geomet-
ric nonlinearities represented.  The code uses both the
modified and full Newton methods for its nonlinear solu-
tion algorithms, and accounts for large rotations in a shell
by using a co-rotational algorithm at the element level.
The Riks pseudo arc-length path following method12 is
used to continue a solution past limit points in a nonlin-
ear response.  With this method, the incrementally ap-
plied loading parameter is replaced by an arc-length
along the solution path which is then used as an indepen-
dent loading parameter.  The arc-length increments are
automatically adjusted by the program as a function of

the solution behavior.  The strain energy release rate is
calculated in STAGS, from a nonlinear equilibrium state,
using the modified crack closure integral technique.16

Results and Discussion

The geometrically nonlinear analysis results for un-
stiffened cylindrical shells with a longitudinal crack are
presented in this section.  The  shell radius, half-crack
length, and wall thickness were varied to provide a vari-
ation of the shell curvature parameter of .
All computations were performed using msi
and .   The loading condition was internal pres-
sure, which generates a hoop stress,  , and an applied
axial stress, , which is the sum of the stresses due to a
bulkhead pressure load, , and an applied mechanical
load, .  Three applied axial stress values were con-
sidered:  ,  and  to demon-
strate the effect of biaxial loading conditions on the
bulging factors.

This section is separated into three parts.  First, an
introductory description of the behavior of two represen-
tative shell geometries subjected to internal pressure
loads is provided to demonstrate the effects of geometric
nonlinearities on the shell response.  Second, the nonlin-
ear finite element results for the bulging factor are pre-
sented as a function of the shell curvature parameter ,
and the crack-length-to-radius ratio,  , for values of
the far-field hoop stress  equal to 1.0, 5.0, 10.0, 15.0
and 20.0 ksi.  Bulging factor results based on linear shal-
low shell theory from Erdogan and Kibler,3 and nonlin-
ear bulging factor results from expressions previously
presented in Eqs. (7-9) are presented as well.  Finally, the
effect of the biaxial load ratio, , on the computed
bulging factor is presented.

General Discussion

Two shell geometries are considered to demon-
strate the differences in the behavior of shells with differ-
ent geometries.  The first shell geometry, referred to  as
configuration (1), has a radius,  in., a thickness,

 in., and a half-crack length,  in.  The
second shell geometry, referred to as configuration (2),
has a radius,  in., a thickness,  in., and
a half-crack length,  in.  Both geometries have
the same value of , and therefore, the shell curvature
parameter  is small for configuration
(1), and large for configuration (2).  To illustrate and
compare the behavior of these configurations, the radial
displacement  at the center of the crack edge, the top
and bottom surface axial stresses at the center of the
crack edge, and the crack-tip stress intensity factors and
the bulging factor are presented as a function of the far-
field hoop stress .

The bulging radial displacement at the center of the
crack edge, , is shown in Fig. 3 as a function of the
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far-field hoop stress .  For configuration (1),  is a
linear function of  with a relatively small amplitude.
The value of  is equal to 0.94 when the value of 
is equal to 10 ksi.  For configuration (2),  is a nonlin-
ear function of .  The displacement  initially in-
creases rapidly with increase in load, and as the load is
increased, the rate of change of increase in  reduces
with increase in load.  The value of  is equal to 88
when the value of   is equal to 10 ksi, which is very
large in the context of nonlinear shell theory.  

The axial stress response at the center of the crack
edge is shown in Fig. 4 as a function of the far-field hoop
stress .  For configuration (1), the response is predom-
inantly a linear bending response, with a net compressive
axial stress.  As the far-field stress is increased beyond
10 ksi, stresses on the inner surface of the shell wall ap-
proach yielding.  For configuration (2), the initial re-
sponse, at very low load levels, is predominantly a
bending response.  As the load is increased and the crack
bulges, axial tensile stresses develop along the crack
edges resulting in a net membrane tensile axial stress.
These tensile stresses increase the resistance of the shell
to additional crack bulging and crack opening.  The non-
linear coupling that occurs between the bulging deforma-
tions and the membrane tensile stresses is the reason for
the stiffening response of  with increasing load as
shown in Fig. 3 for this configuration.    

The nonlinear stress intensity factor  for each
configuration is shown in Fig. 5.  Curvature and bulging
deformations cause stress intensity factors for the curved
shells, , that are greater than the corresponding values
for a flat plate, .  For configuration 1,  varies lin-
early with far-field stress, and the bulging factor  is in-
dependent of the load.  For configuration (2),  has
higher values than for configuration (1), and increases
rapidly during the initial loading phase, causing a higher
bulging factor initially.  At higher loads, the axial mem-
brane tension along the crack edge reduces the bulging
deformations and the rate of increase in , and is re-
flected in a lower bulging factor as the far-field stress in-
creases.  These results show that, for these configurations
which have the same a/R, the bulging factor is a function
of the far-field stress for the configuration with the larger
value of R/t, and is constant with load for the configura-
tion with a lower value of R/t.  This trend is also observed
in Fig. 6 which shows β as a function of a/R, R/t, and 
for 31 of the configurations considered in the present
parametric study.  In this figure, each configuration has
unique values of a/R and R/t, and bulging factors are
shown as discrete points for each configuration for far-
field stress levels of 1 ksi, 5 ksi, and 10 ksi.  Configura-
tions (1) and (2) described above are identified by the
heavy vertical dotted lines in Fig. 6.  It is shown in Fig.
6 that the discrete points with the same values of a/R and

 define a curve as R/t is varied.  The curves defined by
the points with a/R = 0.2 collapse to a single curve for
small values of R/t, indicating that  is independent of
pressure for small values of R/t.  The curves defined by
the points with a/R = 0.05 show a similar trend, but the
results collapse onto a single curve at a larger value of R/
t than the curves with a/R = 0.2.  The separation and dif-
ference in slopes of the curves for a/R = 0.2 and a/R =
0.05 for the same value of R/t indicate that the parameter
R/t does not fully characterize the response. 

The bulging factors for the same 31 configurations
are presented in Fig. 7 as a function of the shell parame-
ters , a/R, and .  In
addition, bulging factors based on a linear shallow shell
formulation (Erdogan and Kibler3) are shown by the dot-
ted line in Fig. 7.  For lower values of  and smaller
values of , the bulging factors from the nonlinear anal-
ysis are independent of  and approach the linear shal-
low shell values.  For constant values of  and a/R, as

 increases, the bulging response transitions from a lin-
ear bending dominated response to a nonlinear mem-
brane dominated response, and the bulging factor
becomes independent of .  For given values of a and R,
the bulging factor’s independence of  is equivalent to
an independence of thickness.  This predicted thickness
independence is consistent with experimental results ob-
tained by Peters and Kuhn,5 and Anderson and Sullivan.6

The transition from the linear bending dominated re-
sponse to the nonlinear membrane dominated response is
gradual, as suggested by Hahn, et al.,17 and the value of

where this transition occurs is a function of a/R and
.

Comparison of Bulging Factor Results from Different 
Methods

The bulging factors from the nonlinear analyses are
compared to predictions from Erdogan and Kibler,3

Chen (Eq. 7), Jeong and Tong (Eq. 8), and Bakuckas et
al. (Eq. 9)  in Figs. 8 and 9.  In Fig. 8, the bulging factors
are compared for a/r = 0.10, and values of  = 1 ksi, 5
ksi, 10 ksi, and 20 ksi.  In Fig. 8a, Erdogan and Kibler’s
solution and the STAGS nonlinear analysis predictions
correlate well for values of  and  where the response
is bending dominated.  Erdogan and Kibler’s solution
does not predict the membrane dominated response that
occurs for higher values of  and .  Equation (7) pre-
dicts a region of bending dominated response and the
transition to a membrane dominated response which in-
cludes a dependence on , but Eq. (7) indicates that the
bulging factors are more sensitive to variations in 
than predicted by the nonlinear analysis.  In Fig. 8b, the
bulging factors from Eq. (8) and Eq. (9) correlate well
with the STAGS nonlinear analysis results for values of

 and  where the response is membrane dominated.
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The correlation between Eq. (8) and the STAGS nonlin-
ear analysis results degrades for high and low values of

.  Neither Eq. (8) nor Eq. (9) represents the reduction
in the bulging factor when the response is bending dom-
inated.

The bulging factor results are compared in Fig. 9
for  = 10 ksi, and a/R = 0.025, 0.05, 0.1, 0.2, and 0.4.
In Figs. 9a and 9b, the bulging factors from the STAGS
nonlinear analyses asymptotically approach Erdogan and
Kibler’s solution for small values of .  The value of 
where the bulging factors from the nonlinear analysis de-
viate from Erdogan and Kibler’s solution is a function of
a/R, and for small values of , this deviation occurs for
values of  less than 1.0.  The results in Figs. 9a and 9b
indicate that Eq. (7) reflects the general trend of the bulg-
ing factors from the nonlinear analysis, but Eq. (7) ap-
pears to underpredict the bulging factor in the bending
dominated region, and overpredicts the bulging factors in
the membrane dominated region.   In Figs. 9c and 9d, the
bulging factors from Eq. (8) and Eq. (9) correlate well
with the STAGS nonlinear analysis results for values of

 and a/R where the response is membrane dominated.
The correlation between Eq. (8) and the nonlinear analy-
sis results degrades for the higher values of a/R, while
the correlation between Eq. (9) and the nonlinear analy-
sis results degrades for lower and higher values of a/R.
Again, neither Eq. (8) nor Eq. (9) represents the reduc-
tion in the bulging factor when the response is bending
dominated.  

The results presented in Figs. 8 and 9 indicate that
the bulging responses obtained from the nonlinear anal-
yses typically correlate well with the bulging factor ex-
pressions reported in the literature, as long as the
assumptions used in defining the bulging factor expres-
sions are considered.  The results of the nonlinear analy-
ses identify specific regions of the response which are
either bending dominated, membrane dominated, or in
transition between these response regions.   Erdogan and
Kibler’s solution is based on linear shallow shell theory
which assumes small deformations and does not account
for the nonlinear coupling between the bulging deforma-
tions and the membrane stresses that occurs with large
deformations.  Thus, Erdogan and Kibler’s solution does
not predict a membrane dominated bulging response.
Typically, Erdogan and Kibler’s solution is valid for
small values of , and the range of applicability is re-
duced for lower values of a/R and higher values of .
The bulging factor expressions in Eqs. (7-9) are based on
the assumption that the primary resistance to bulging de-
formation is due to membrane tension stress rather than
due to bending stiffness, and thus, these expressions
should correlate well with the nonlinear analysis results
for configurations where the response is membrane dom-
inated, and should not accurately represent a bending

dominated response.  The bending dominated response is
represented in Eq. (7) using a tanh  function to empirical-
ly modify the membrane theory.  The discrepancies be-
tween the results from Eq. (7) and  the nonlinear analysis
results are probably due to the limited range of parame-
ters and experimental data that were used to obtain the
empirical constants in Eq. (7).   Since both Eq. (8) and
Eq. (9) contain empirical constants that were derived by
fitting the expressions to experimental data or to results
of nonlinear finite element analyses, respectively, the
correlation between bulging factors obtained with these
equations and the current nonlinear analysis degrades for
configurations or ranges of loading conditions outside of
the range of parameters used to derive the empirical con-
stants.   

Biaxial Loads

Most nonlinear bulging factor expressions for axial
cracks have been developed with the assumption that the
cylindrical shell is subjected to biaxial loads with

, or a biaxial load ratio .
Chen7 also conducted fatigue experiments for pressur-
ized curved sheets with χ = 0.0 and 0.24.  Chen reported
that biaxial loads significantly reduced the bulging de-
formations and consequently reduced the crack growth
rate.  The bulging factors for configurations with a/R =
0.1,  = 10 ksi, and biaxial load ratios χ = 0.0, 0.5, and
1.0 are shown in Fig. 10.  The results of the STAGS non-
linear finite element analyses show that the biaxial load
ratio has no significant effect on the bulging factors for
small values of  where the response is bending domi-
nated.  For values of  greater than 1.0, the far-field ax-
ial stress influences the local axial membrane stress
along the length of the crack.  Increasing χ from 0.5 to
1.0 increases the local membrane tensile stress, suppress-
es the crack bulging deformations, and reduces the bulg-
ing effect by 20%.  Conversely, decreasing χ from 0.5 to
0.0 decreases the local membrane tension stress, increas-
es the crack bulging deformations, and increases the
bulging effect by 28%.  The bulging factors from Er-
dogan and Kibler’s solution, Eq. (8), and Eq. (9) do not
depend on χ.  Chen includes the effect of the biaxial load
ratio in Eq. (7), but the results in Fig. 10 indicate that Eq.
(7) substantially overpredicts the bulging response for χ
= 0.0.  The large discrepancy between the bulging re-
sponse predicted by Eq. (7) and the nonlinear finite ele-
ment results suggests that the application of the
functional dependence of the bulging factor on χ that is
portrayed in Eq. (7) is limited.

Concluding Remarks

The results of a geometrically nonlinear parametric
study to determine the effects of shell curvature and
crack length on the stress intensity factors at the tips of
longitudinal cracks in thin unstiffened pressurized shells
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are presented.  The results are normalized by the stress
intensity factor for flat plates, and presented in terms of
the so-called crack "bulging factor" commonly used in
design to represent the effects of shell curvature on the
stress intensity factor.  The results of the study are pre-
sented in terms of the applied loads and nondimensional
parameters that depend on the shell radius, the shell
thickness, and the crack length.  The results indicate that
the magnitude of the bulging factor is affected by the
shell radius, the shell thickness, the crack length, and the
magnitude and combination of internal pressure and me-
chanical loads, and that for many shell geometries and
loading conditions the bulging factor is strongly influ-
enced by the geometrically nonlinear response of a pres-
surized thin shell.  The local response of the shell in the
neighborhood of the crack is dominated by membrane or
bending response characteristics depending on the val-
ues of the shell radius, the shell thickness, the crack
length, and the magnitude of the applied loads.  Increas-
ing the ratio of the axial tensile stress to the hoop tensile
stress makes the membrane response near the crack more
dominant, but decreasing the ratio of these stresses
makes the bending response near the crack more domi-
nant.  The geometrically nonlinear results for the present
study are compared with other results from the literature,
and limitations on the use of these other results are sug-
gested.
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Fig. 2 Typical finite element models.

Fig. 3 Bulging deflection in radial direction in the 
center of the crack, wc, versus far-field hoop 

stress .

Fig. 4 Axial stresses at the center of the crack edge, 
 versus far-field hoop stress .

Fig. 5 Stress intensity factor  and bulging 
factor, , versus far-field hoop stress .
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Fig. 6 Bulging factor versus radius-to-thickness parameter, R/t, for different values of a/R and
far-field stress .

Fig. 7 Bulging factor versus shell curvature parameter  for a/R = 0.05 and 0.2, and

far-field stress = 1 ksi, 5 ksi, and 10 ksi.

Fig. 8 Comparison of bulging factors for a/R = 0.1, and σy = 1 ksi, 5 ksi, 10 ksi, and 20 ksi.
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Fig. 9 Comparison of bulging factors for far-field stress  = 10 ksi, and various values of a/R.

Fig. 10 Comparison of bulging factors for far-field stress  = 10 ksi, a/R = 0.1, and biaxial load ratios  χ = 0.0, 
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